direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.45C24, C42⋊14C23, C22.58C25, C25.77C22, C24.495C23, C23.275C24, C22.1112+ 1+4, C4⋊C4⋊20C23, (C2×Q8)⋊7C23, C22⋊C4⋊8C23, (C2×C4).58C24, (C4×D4)⋊106C22, (C23×C4)⋊17C22, (C2×C42)⋊53C22, (C22×C4)⋊10C23, C22⋊Q8⋊87C22, (C2×D4).454C23, C4.4D4⋊73C22, (C22×Q8)⋊28C22, C42⋊C2⋊94C22, C42⋊2C2⋊28C22, C22≀C2.23C22, C23.319(C4○D4), C2.18(C2×2+ 1+4), (C22×D4).590C22, C22.D4⋊43C22, (C2×C4×D4)⋊84C2, (C2×C22⋊Q8)⋊71C2, (C2×C4⋊C4)⋊135C22, (C2×C4.4D4)⋊51C2, C2.30(C22×C4○D4), C22.24(C2×C4○D4), (C2×C42⋊C2)⋊59C2, (C2×C42⋊2C2)⋊34C2, (C2×C22≀C2).17C2, (C22×C22⋊C4)⋊33C2, (C2×C22⋊C4)⋊88C22, (C2×C22.D4)⋊56C2, SmallGroup(128,2201)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.45C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=b, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=bd=db, geg=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
Subgroups: 1084 in 664 conjugacy classes, 404 normal (18 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C25, C22×C22⋊C4, C2×C42⋊C2, C2×C4×D4, C2×C22≀C2, C2×C22⋊Q8, C2×C22.D4, C2×C22.D4, C2×C4.4D4, C2×C42⋊2C2, C22.45C24, C2×C22.45C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22.45C24, C22×C4○D4, C2×2+ 1+4, C2×C22.45C24
(1 25)(2 26)(3 27)(4 28)(5 12)(6 9)(7 10)(8 11)(13 31)(14 32)(15 29)(16 30)(17 22)(18 23)(19 24)(20 21)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 11)(2 12)(3 9)(4 10)(5 26)(6 27)(7 28)(8 25)(13 24)(14 21)(15 22)(16 23)(17 29)(18 30)(19 31)(20 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 31 11 19)(2 30 12 18)(3 29 9 17)(4 32 10 20)(5 23 26 16)(6 22 27 15)(7 21 28 14)(8 24 25 13)
(2 12)(4 10)(5 26)(7 28)(14 21)(16 23)(18 30)(20 32)
(1 11)(2 12)(3 9)(4 10)(5 26)(6 27)(7 28)(8 25)(13 22)(14 23)(15 24)(16 21)(17 31)(18 32)(19 29)(20 30)
G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,12)(6,9)(7,10)(8,11)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,24)(14,21)(15,22)(16,23)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,11,19)(2,30,12,18)(3,29,9,17)(4,32,10,20)(5,23,26,16)(6,22,27,15)(7,21,28,14)(8,24,25,13), (2,12)(4,10)(5,26)(7,28)(14,21)(16,23)(18,30)(20,32), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,22)(14,23)(15,24)(16,21)(17,31)(18,32)(19,29)(20,30)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,12)(6,9)(7,10)(8,11)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,24)(14,21)(15,22)(16,23)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,11,19)(2,30,12,18)(3,29,9,17)(4,32,10,20)(5,23,26,16)(6,22,27,15)(7,21,28,14)(8,24,25,13), (2,12)(4,10)(5,26)(7,28)(14,21)(16,23)(18,30)(20,32), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,22)(14,23)(15,24)(16,21)(17,31)(18,32)(19,29)(20,30) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,12),(6,9),(7,10),(8,11),(13,31),(14,32),(15,29),(16,30),(17,22),(18,23),(19,24),(20,21)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,11),(2,12),(3,9),(4,10),(5,26),(6,27),(7,28),(8,25),(13,24),(14,21),(15,22),(16,23),(17,29),(18,30),(19,31),(20,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,31,11,19),(2,30,12,18),(3,29,9,17),(4,32,10,20),(5,23,26,16),(6,22,27,15),(7,21,28,14),(8,24,25,13)], [(2,12),(4,10),(5,26),(7,28),(14,21),(16,23),(18,30),(20,32)], [(1,11),(2,12),(3,9),(4,10),(5,26),(6,27),(7,28),(8,25),(13,22),(14,23),(15,24),(16,21),(17,31),(18,32),(19,29),(20,30)]])
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 2R | 2S | 4A | ··· | 4P | 4Q | ··· | 4AD |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C2×C22.45C24 | C22×C22⋊C4 | C2×C42⋊C2 | C2×C4×D4 | C2×C22≀C2 | C2×C22⋊Q8 | C2×C22.D4 | C2×C4.4D4 | C2×C42⋊2C2 | C22.45C24 | C23 | C22 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 16 | 16 | 2 |
Matrix representation of C2×C22.45C24 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 4 | 2 |
4 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 1 | 3 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 3 | 4 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,2],[4,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,1,0,0,0,2,3],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,3,0,0,0,0,4] >;
C2×C22.45C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{45}C_2^4
% in TeX
G:=Group("C2xC2^2.45C2^4");
// GroupNames label
G:=SmallGroup(128,2201);
// by ID
G=gap.SmallGroup(128,2201);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,456,1430,570]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=b,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations